Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Int ; 157: 106818, 2021 12.
Article in English | MEDLINE | ID: covidwho-1491995

ABSTRACT

This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015-2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples' mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015-2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015-2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
2.
Urban Clim ; 36: 100786, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1069035

ABSTRACT

The air quality in the cities of developing countries is deteriorating with the proliferation of anthropogenic activities that add pollutant matters in the lower part of the troposphere. Particulate matter with an aerodynamic diameter lower than 10 µm (PM10) is considered one of the direct indicators of air quality in an urban area as it brings health morbidities. The article empirically investigates the role COVID-19 related lockdown has played in bringing down pollution level (PM10) in the megacity of Kolkata. It does so by taking account of PM10 level in three stages - pre, presage and complete-lockdown timelines. The extracted results show a significant declining trend (about 77% vis-a-vis the pre-lockdown period) with 95% of the geographical area under 100 µm/m3 and a strong fit with the station-based records. The feasibility and robustness showed by the remotely sensed data along with other earth observatory information for larger-scale pollution prevalence make its adoption imperative. Simultaneously, it becomes urgent in times of lockdown when the physical mobility of maintenance and research staff to stations is significantly curtailed. The work contributes to study on PM10 by its ability to replicate in examining cities of both the global north and global south.

3.
Int J Health Plann Manage ; 35(6): 1623-1625, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-740815
4.
Habitat Int ; 103: 102230, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-718758

ABSTRACT

The global pandemic has an inherently urban character. The UN-Habitat's publication of a Response Plan for mollification of the SARS-CoV-2 based externalities in the cities of the world testifies to that. This article takes the UN-Habitat report as the premise to carry out an empirical investigation in the four major metro cities of India. The report's concern with the urban character of the pandemic has underlined the role of cities in disease transmission. In that wake, the study demarcates factors at the sub-city level that tend to jeopardize the two mandatory precautionary measures during COVID-19 - Social Distancing and Lockdown. It investigates those factors through a Covid Vulnerability Index. The Index devised with the help of Analytic Hierarchy Process demarcates the low, moderate, high, and very high vulnerable city sub-units. Secondly, UN-Habitat's one of the major action areas is evidence-based knowledge creation through mapping and its analysis. In our study, we do it at a granular scale for arriving at a more nuanced understanding. Thus, in harmony with the UN-habitat's we take the urban seriously and identify the gaps that need to be plugged for the pandemic cities of now and of the future.

SELECTION OF CITATIONS
SEARCH DETAIL